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Phenomenological model of weakly damped Faraday waves and the associated mean flow
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A phenomenological model of parametric surface wa¥esaday waveds introduced in the limit of small
viscous dissipation that accounts for the coupling between surface motion and slowly varying streaming and
large-scale flowgmean flow. The primary bifurcation of the model is to a set of standing wasgges, given
the functional form of the model nonlinearities chosen he@air results for the secondary instabilities of the
primary wave show that the mean flow leads to a weak destabilization of the base state against Eckhaus and
transverse amplitude modulation instabilities, and introduces a longitudinal oscillatory instability which is
absent without the coupling. We compare our results with recent one-dimensional amplitude equations for this
system systematically derived from the governing hydrodynamic equations.
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[. INTRODUCTION are always retained. Thus weakly nonlinear corrections to
) ) surface waves and mean flows must be considered simulta-
The purpose of this paper is to couple a phenomenologinegysly, which has not been done in three dimensions in the
cal order parameter model of parametric surface waves in th@yit considered belowsee[12] for an analysis of this limit
limit of weak viscous dissipation to slowly varying flows jn two dimensions and13—15 for an analysis of related
(mean flows. To date, most theories of parametric surfacelimits). The effects considered here are not unlike other
waves near onset have neglected such flows despite the olmown phenomenology that includes the streaming flow pro-
servation that their effect is of the same order as other cubiduced by fixed surface wave§16-19, and references
nonlinear conservative terms retained. The coupling to thehereir) and the evolution of surface waves in the presence of
phenomenological model presented here allows us to discussfixed vortical flow[20,21].
the simplest consequences that these flows have in a laterally A consistent introduction of mean flow effects into the
unbounded geometry, namely, shifts in thresholds of secondimplitude equations for Faraday waves requires explicit con-
ary instabilities of the base pattern of standing waves, andideration of special limits that involve the physical dimen-
the appearance of a new longitudinal oscillatory instability. sions of the container. We specifically focus here on the case
When a layer of an incompressible fluid is vibrated peri-of a fluid depth that is logarithmically large compared to the
odically along the direction normal to the free surface at restyavelength, and derive a set of evolution equations for the
it can exhibit parametrically driven surface waves, alsosurface waves and the associated mean flow in the double
known as Faraday wavd4—4]. Just above the primary in- limit of small viscosity and large aspect ratithe ratio be-
stability of the planar free surface, a set of standing surfacéween the lateral size of the container and the wavelgngth
waves emerges leading to a stationary pattern with a symmeé\e find two separate contributions to mean flow, namely an
try that depends on the physical parameters of the fluid anahviscid contribution arising from the slowly varying motion
the frequency of the forcingb—§]. Intricate phenomena ap- of the free surface, similar to the one appearing in classical
pear in the limit of weak viscous dissipation in which non- Davey-Stewartson mode[22], and a viscous one resulting
linear wave interactions responsible for wave saturation anffom a slowly varying shear stress produced by the oscilla-
pattern selection are dominated by triad resonant interactiortery boundary layer attached to the free surface. This latter
[9-11. Whereas the first bifurcation away from planarity is contribution describes vorticity transpaity viscous diffu-
to a set of standing waves in which mean flow effects aresion or convectionfrom the boundary layer into the bulk
absent, mean flows are expected to be important in determiri23].
ing the stability of the primary waves, and more generally in ~ An important simplification in our analysis is that the cu-
weakly damped systems. In this latter case, standing-waveic nonlinear terms of the phenomenological model are cho-
amplitude equations can be expected to be valid only vergen so as to lead to a stripe pattern above onset instead of a
close to onset. square pattern as experimentally observed in the limit of
Current weakly nonlinear theory is restricted to the smallweak viscous dissipation. While it is a simple matter to
region above threshold in which standing waves are stable, modify the functional form of the cubic term to produce
state in which mean flows vanish identically. However, thesquare patterns, we have chosen to first clarify the effect of
contribution from mean flows to the equations governing themean flows on slow modulations of a stripe pattern. There is
slow evolution of the surface waves can be of the same ordero satisfactory theory at present that can account for the
as the standard cubic nonlinear and conservative terms whidhteraction between slow spatial modulation of the waves
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and mean flows in three dimensions, and the case of stripes
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ut=(-v,u,0), (11

is considerably simpler than other symmetries involving a

larger number of plane-wave components at onset.

Il. FORMULATION

We consider a fluid layer of unperturbed depth sup-
ported by a horizontal plate that is vibrating vertically with
an amplitudea” and a frequency@’, where the superscript *

denotes dimensional quantities. In order to facilitate com-

parison with related results ifil1,24, we use for adimen-
sionalization the characteristic time™* and lengthk™*,
where the wave numbe¢ is related tow" by the inviscid
dispersion relation

w*z - g* k* + 0-* k*3/p* , (1)
in terms of the gravitational acceleratigh, the surface ten-
sion ¢”, and the density", all assumed constant. Here we
are assuming that the wavelendgh' is (at least somewhat

h
dh+V ( f
small compared with the depth of the container. The resulting -d

and the superscript over a tensor denotes the transpose;
p(=(pressurg+(Jul2+w?)/2+[1-T"+4a sin(2t)]z)) is acon-
veniently modified pressure, ardis the (vertical) free sur-
face deflection. For simplicity, we do not consider lateral
walls, but impose periodic boundary conditions in two hori-
zontal directions, namely

(U,W, p)(x + Lliyizat) = (U,W, p)(xry + L21Z!t)
=(uw,p)(xy,z1),

f(x+Lq,y,t) =f(x,y + Ly, t) = f(x,y,1). (12

And for convenience we also consider the vertically inte-
grated continuity equation

u dz) =0, (13

dimensionless continuity and Navier-Stokes equations in a | . . .
reference frame attached to the vibrating container, with th@btained upon integration of E2) in ~d<z<h and sub-

z=0 plane at the unperturbed free surface, are

V.u+dw=0, (2)
u-w(Vw=-adu) —u'V -ut =- Vp+ ¢V + &2,
3

FWHU - (VW= ) == ap+ yVAW+ Zw)/2,  (4)

in —d<z<h(x,y,t), with boundary conditions resulting

from no slip at the supporting plate,
u=0, w=0atz=-d,

©)

and kinematic compatibility and equilibrium of tangential
and normal stresses at the free surface,

dh+u-Vh=w, (6)
du+ Vw-(Vu+Vu')-Vh
+[20w-(du+ Vw)- Vh]Vh=0, (7)
p-(lu2+w?/2 -[4asin 2+1-T]h
+T'V -[Vh/(1 +|Vh[?)Y?]
=yow-(du+ Vw) - Vh
+[Vh-(Vu+ Vu"/2]- VhY/(1+|Vh]?» (8)
at z=h. Here
u=(u,v,0) 9)
andw are the horizontal and vertical velocity components,
V =(dy,d,,0) (10

denotes the horizontal gradient, the superscriptover a

stitution of Eq.(6).

A. Multiple scale analysis: Oscillatory and mean flows

We consider next a specific range of parameters in which
it is possible to simplify the problem by separating fluid
motion into a “fast” oscillatory component and a “slow”
mean flow. In particular, we consider the system of surface
waves near onset, and in the limits of a very large lateral
surface and weak viscous dissipation. The problem depends
on the following dimensionless parameters: the dimension-
less viscosityy=2v"'k?/w" (with v" the kinematic viscosity
the gravity-capillary contributior =0 k3/(p" »"?), the forc-
ing amplitudea=a’k", the container deptd=d’k’, and the
aspect ratiod ; and L,; note that, according to Eql), O
<I'=<1 and the extreme cas€s=0 and 1 correspond to the
purely gravitational and purely capillary limits, respectively.
The approximation below requiréa) that the aspect ratio of
the container be largéb) that the surface waves be weakly
damped,(c) that a small wavelength be exhibited compared
to the container’s depth, ar(d) a small steepness, which in
turn require that

L>1, d>1, y<1, |[Vhl<1l, a<l1l, (19
where L<min{L,,L,}. The large spatial scale set by the
(large) aspect ratio introduces a slow horizontal scale over
which both spatial and temporal modulations are expected to
occur. As suggested by the 2D cdde], this scale is ex-
pected to be determingth the equations for the oscillatory
flow associated with the surface waydyy the balance be-
tween cubic nonlinearity and eith&r) transport with the
group velocity or(ii) dispersion. Andd must be not too
large; see below. For the sake of clarity, we assumedligt
logarithmically large compared to the remaining small pa-
rameters(namely y, a, andL™Y) andwe shall treat d asan

horizontal vector denotes the result of rotating the vector 900(1) parameter In fact, for simplicity we consider the dis-

counterclockwise, namely,

tinguished limit
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Y<ed<Lt~y~a~e? (15)  velocity and does not coincide in general with the velocity

associated with the time average of the trajectories of fluid

wheree is a measure of the surface-wave amplitude; see EGyjements. The latter is theagrangian mean velocity, or
(18) below. The estimatey~a-~s” result from imposing  mass transporvelocity (denoted here asu™), which is the
that linear damping, cubic nonlinearity, and parametric forc-ynopriate velocity to analyze mean trajectories of passive
ing be of the same order. Therefore, we are implicitly assUMgcaars(see, e.9.[25,2§ in connection with chaotic advec-
ing that the coefficient of the cubic term &(1), which ex- 5 127]). The difference between the two is tBeokes drift
cludestriad resonancegll]. If these are present, the cubic gq that, in the notation of this paper, its horizontal and ver-
coefficient become®(y 1) and a different scaling applies. In tjcg components, scaled wigf, are given by[28]

order to concentrate on the effects of mean flows, we exclude

triad resonances in what follows. t t ts
Under these assumptions, we sKatiplicitly) use a mul- um™—um=ysd= (f Vo. V) Vop+ (f az¢)azv b/,
tiscale analysis in botlthorizonta) space and time. But in

order to make a not too technical presentation and to avoid

obscuring the main ideas with a too involved notation, we t t ts

shall use only one time variable and one space variable inw™ - w™=ws4= <(f qu) -V (0,0) + (f ¢9z¢)€9zz¢> ,

each horizontal direction. The basitas scales involve

O(1) increments ofx, y, or t. A magnitudey that exhibits (22

these fast scales at leading order is such that
in a first approximation, where we are anticipating E2p)

|0ox ~|yl, |oglayl~ g, orloylat] ~[ul, below, and the operatdfi is defined as
(16)
t t t
and it will be said todepend stronglyn the associated vari- f e f Yt O, (23)
ablex, y, ort. If instead the magnitude only changes over the

slower scale at leading order, namely, if with (-)!° standing hereafter fahe time-oscillatory partde-

l[owlox| < |y, |owlay|<|¥, or|dwlat|<|H, fined as
(17)

. . . (W= y=(P*=. (24)
then the magnitude will be said tdepend weaklyon the
associated variable, y, ort. To proceed, we decompose the By definition, Eq.(23) is independent of.
flow variables and the free surface deflection into oscillatory
and time-averaged parts, associated with the surface waves )
and the mean flowdenoted hereafter with the superscripts B. Oscillatory flow

andm), respectively, as We begin by deriving the equations governing the oscil-

(u,w, p,h) = s(U°, WP, p°, h°) + s2(U™ W™, p™ k™), (18) latory flow associated with the surface waves which exhibits
_ _ _ _ _ a thin viscous boundary layer @f(+'y) thickness attached to
where(i) the (oscillatory) flow variables associated with the the free surface. In the bulk region outside this boundary

surface waves are required to be such that layer, the oscillatory velocity components and the pressure
<uo>ts: 0, <Wo>ts: <po>ts: <ho>ts: 0, (19) are given by
with () standing here and hereafter for the time average in ) t
the basic oscillating period u=Ve+e f 9, | (VW™= 9,u™)
. N th2m . t L ts
wi=em| (20 . f Vo) v.um| +0Ged,

and (i) the variables associated with the mean flow are re-
quired to depend weakly on time; more precisely, we assume t
that W= 4,¢ - 82<f V¢) (VW™= g,u™ + O(e),

au™ ~ U™, (o ~ 2w, g™ ~ 2",
|athm| -~ 82|hm|, (21) p == at(ﬁ! (25)

where we are anticipating the time scale for the slow evoluas obtained upon substitution of Ed.8) into Egs.(3) and
tion of the mean flowt~e72. Also we anticipate that the (4), where ¢ is the velocity potential. Thus the oscillatory
rescaled flow variables®, ..., h°, u™, ..., h™are at most of  flow is potential at leading order, but not at ordgy which
order unity; see below. The mean flow is described in termsnust be retained in what follows. Substitution of E85)

of the time-averaged velocity?u™, which is theEulerian  into Eq.(2) yields, after some algebra,
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t
V2+ b+ 82< f azqs) Vv (VW - g™

coov (o) v ]

t
_82<f V¢) - 9,(VW" = g,u™ =0

for—-d<z<D0. (26)

PHYSICAL REVIEW E70, 046306(2004

We are consistently neglecting terms of or@érin Egs.

(31) and (32) because of the approximations listed in Eq.
(15), and taking into account that those terms that are either
(a) cubic in the oscillatory flow variables @b) linear in both

an oscillatory variable and a slowly varying variable, exhibit
zero temporal mean values at leading order.

Before proceeding any further, we note that mean flow
does not contribute to the averagg@d the time scalg~ 1)
energy equation at leading order, which is consistent with the
fact that mean flow variable@elocity and free surface de-

Here we are taking the upper boundary at the unperturbefiection are small compared to their counterparts in the os-

free surface, which can be done becabsées small. The
boundary conditions at the upper boundary must include th

cillatory flow. The averaged energy equation is obtained
gpon multiplication of Eq.(26) by d¢, integration in

effect of the vortical flow in the boundary layer attached to0<x<L;,0<y<L,,-d<z<O0, averaging over a period of

the free surface on the oscillating flow in the bulk. To the

oscillation, integration by parts repeatedly, and substitution

approximation relevant here, this only requires us to replac€f Egs.(31), (32), and(34). We find

the boundary conditioki7) by (see, e.g.[11])

dh+u- Vh=w+W(Xx,y,t) atz=h, (27)
whereW is given by
HW(,Y,1) = YVH(d,9); (28)
this equation can be integrated to obtain
t
W=y f V2(3,). (29)

Thus, to the approximation relevant here, Ef§3) can be
rewritten as

h
oh+ V (f
-d

The boundary conditions for the oscillatory flow at the un-

u dz) =y f V2(9,0). (30)

perturbed free surface are now obtained by a Taylor expan

sion from Eqgs(8), (25), and(30), and are found to be

t
oh® = d,¢ + 82( f V¢> (VW= g,u™ + &(V - (h°V ¢))t°
+£2V - [h™V ¢+ h°u™+ (h°)29,V ¢/2]

t
=y f V3,9, (3D
i+ e(h°Tp)° + e[ h"FFp — h°0,p™ + (h°)237, 12]
+e(| V @2 +[0,D2 + U™ V p+ 19| V ¢|?
+|3,0|2)12 + da(h® sin 21)° + (1 - T")h°
-TV - [Vh(1+&] VhPR+ yp=2, (32

where we are using E@58) below. The boundary condition
(5) at the lower plate and the periodicity conditio(ik2)
yield

d,p=0 atz=-d, (33
d(X+Ly,y,z) = d(Xy + Ly, zt) = d(X,Y,21),
ho(x + Ly,y,t) = h°(x,y + L,,t) =h%(x,y,t). (34)

de Lo [t
dt f f LAV f? +|a,¢[%) + 8a(gh°)
0 0

X(h° sin 2)1°)s dxdy+ O(y+a+ &?), (35

where& is the time-average(kinetic plus potentiglenergy.
The first term on the right-hand side of E§5) (except for a
factor of 2 is the classical result, first given by Landau and
Lifshitz [29], that approximated viscous dissipation by linear
damping from the bulk potential floygee alsg10,11]). Note
that mean flow variablegooth velocity and free surface de-
flection) are small compared to their counterparts in the os-
cillatory flow and do not contribute to the energy at leading
order. To obtain Eq(35), we have taken into account thaf
andw™ are independent df at leading order, and that if
and ¢ aret-periodic, of period 2r (as the variables associ-
ated with the oscillatory flow are to first approximatjpn
then to leading order we havép['y)'S=—(y['y)'s and

(yftyys=0.

C. Mean flow

In order to obtain the equations and boundary conditions
governing the slowly varying flow, we must take into ac-
count the oscillatory boundary layer attached to the free sur-
face, which provideqat the edge of this laygra slowly
varying shear stress that must be imposed as a boundary
condition for the mean flow in the bulk. This forcing mecha-
nism was first uncovered by Longuet-Higgif#3], who ob-
tained an explicit expression for the forcing shear stress pro-
duced by general boundary layers in 2D. The counterpart of
this expression in 30for a free surface of general shapeas
only been obtained quite recenfl§0], although quasi-planar
free surfacegsuch as the ones considered hevere already
considered in a not too well known wor81]. With the
notation of this paper, the general formulas derived36]
yield

U™+ VW= 2AV[V - (h°V ¢)]+(Vh°- V)V ¢
+(V?¢) VhO)'S atz=0, (36)

where only the leading-order contribution as-0 and e
—0 is retained. The boundary layer attached to the free sur-
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face has no effect on the other two boundary conditions at o t . . ts
the unperturbed free surface, which are directly obtained qr=p"+e\ oy f V|- (Yw'=-gu™ ) . (43

from Eqgs.(8) and(13) to be

p™- (1 —F)hm+FV2hm:<h°at22¢+ (VB2 + | a,0(2)12)%, Finally the periodicity conditior{12) yields
(37) Wmw™ g™ (x+Ly,y,zt) = Umw™, g™ (x,y + Ly, zt)
=umwmgM(x,y,zt),

0
ohm+ vV (f um dz) =-—V -(h°V ¢)") atz=0,
-d h™(x + Ly,y,t) =hM(x,y + L,,t) = h™(x,y,1). (44
(38) In order to estimate the magnitude of the various terms
where we are only taking into account the leading-ordethat depend on the surface-wave variables and force the
terms. And from Eq(5) we have no slip at the lower plate, mean flow, we assume that at leading order the velocity po-
tential ¢ and the free-surface deflectibfi can be written as

u™=0, w"=0atz=-d, (39  a superposition of plane waves,
at leading order. We are neglecting the effect of the oscilla- N
tory boundary layer attached to the lower plate because its p=ie? S AN 4o o, +-ee
effect is quite smallthe horizontal component of the mean n=-N " . '

flow velocity near the lower plate is proportional to the
square of the vertical jump of the horizontal component of
the oscillatory velocity accross the lower boundary layer
[28], which isO(e %) e2< g2 [Eq. (14)]; this in turn is small

compared to the streaming flow velocity in the bulk, which is
O(¢%). These boundary conditions show that mean flow isyhere the complex amplitudes.y,... Ay are allowed to de-

forced by surface waves in two ways. Those terms appearingend only on slow space and time variables. The wave vec-

on the right-hand sides of Eqg¢37) and (38) provide an  torsk_y,...,ky correspond to onl\ directions because they
inviscid forcing mechanism that by itself would provide an are related in pairs as

inviscid mean flow like that appearing in the Davey-
Stewartson mod€22]. The right-hand side of Eq36) in- k.n,=-k, and |k,=1forn=1,... N. (46)
stead produces a forcing shear stress that drives@us
mean flow which is absent in the usual inviscid and nearly Thus for eachn=1,... N, the nth and the(-n)th waves
inviscid theories of Faraday waves. Note that his forcingcounterpropagate along the same direction. Note that each
stress is generically nonzero and independent of viscosity atair of counterpropagating waves builds a standing wave in
leading order, a fact that is well known but somewhat surthe short time scale if and only j&|=|A_,|, and the whole
prising because this effect is due to the oscillatory boundargurface-wave pattern is seen to be standing in the short time
layer, and is absent in the strictly inviscid case. We remindscale if and only if the following, more stringent condition
the reader that the limit of vanishing viscosity isiagular  holds:
limit which does commute with the limi— 0. We could
decompose the mean flow into its inviscid and viscous parts, AmKn :p_meLn forallmn=1, ... N. (47)
as is done 13,14, but for convenience this is not done
here. Such surface waves will be callepiasistandingoelow.

Finally, we substitute Eqg18) and(25) into Egs.(2) and By using Eq.(45), the forcing terms in the boundary con-
(3), and take the time average defined in ER0) in the  ditions Eqs.(36)~(38) are written as
resulting equations. Proceeding as we did to obtain(&4),

N

ho= > AdtknXtc.c. +---, (45)
n=-N

we find, after some algebra, (2h°5p + |V > + |a,02)'
Vum+ owm=0, (40) =V ¢l* = 10,¢%)"

= (K K= DAAEKnkm)
U™ = S (WS W) (VW™ = g™ + (US4 U)LY -y o '

== Vg"+ (VUM + SuM/2, (41) + D i(Akn - V An= Ak VA knknx + c.c.
m,n
W™+ £2(uSd+ u™) - (VW™= g,u™ +0(L™?), (48)
= - g™+ W VAW + ZW)/2, (42
(RO ts — e ts
where uS? and wS¢ are the horizontal and vertical compo- VAV =V -V )

nents of the Stokes drift given by E®2), and the modified == 22 k- V(AD +O(L7?), (49
pressureg™ is defined as m

046306-5



VEGA, RUDIGER, AND VINALS PHYSICAL REVIEW E70, 046306(2004

(VIV - (h°V )]+ (Vh°- V)V ¢+ (V2¢) V hOy's and along-wavecomponent(or slowly varying in the hori-
I zontal direction
= 1+kp-kpk gltn™m)X

%( m n) mAmAn (Um,Wm, qm’ hm) - (umo’Wmo’Squo’ hmO)

+cc +O(L™Y), (50) + (U™ g2WMS g™ h™), (59)
atz=0; and the Stokes drift velocity components in E2g)  Where the short-wave component is such that
are written as UmMNS=0, (WMYNS=(qMANS=(hMANS=0.  (60)
uSd= 222> (k. -k, + Dk, A A kn X+ cc +O(L™Y),  The long-wave components depend weakly on the horizontal

m n mAmAn
mn variables

G |vum ~Zu™, VW~ 2w, [Vp™ ~ &2p™,

wS9= 207D k- V(AD +O(L), (52 [Vh™g ~ g2[h™, (61)
) " where we are assuming that the slow spatial scale for hori-
in —d<z<0. zontal gradients of the long-wave mean flow is the same as

_Several remarks can be made about these boundary cofirat of the envelope of surface waves, namely of the order of
ditions. First, the forcing term given in E¢48) depends only | ~¢2 [see Eq.(15)]. Also, in Eq. (59) um~wmo~ gme
weakly on the horizontal variablesandy, namely ~ hMo~ yMs— wms~ qMs~hMs~ 1 and thus we are anticipat-
ing the order of magnitude of all variables associated with

(o] 2 2\ts\hs _ | -1
(2h 3‘22¢+ VoI + 10610 L (53 both mean flow components.
where ()" is the horizontal average in the short spatial The equations governing the short-wave component of the
scales mean flow are obtained by substituting E§9) into Egs.
. (36)—(42). The short-wave deflectioh™® is given by
(pyhs= ( f dxdy) f o dxdy. (54) - (1 -T)h™+T'V?hm° = [((h°F,p + (|V $|?
B B

. . + |‘92¢|2)/2>ts>h0]z=01 (62)
Here B is a ball of radius large compared to 1 but small o s .
compared td.. Or, in terms of a horizontal Fourier transform With periodic boundary condlhtlon§1 (x+Ly,y,H)=h(x,y
with associated wave numbéks,,# 0 if (m,n) # (0,0), with ~ *L2,0=h°(X,y,t), and where(-)"® denotes the short-wave
Koo=0, component

(W= g— (Y. (63)

Note that, according to Eq53), the horizontal mean value
of the right-hand side of Eq62) vanishes at leading order,
as required by volume conservation.

(D"S= oo If =2 the€Fmn™, (55)

where ., is allowed to depend weakly ax y, andt (and
strongly onz).

Second, the forcing terms in Eg&l9) and (50) and the ) Short-wave velocity and pressuce™, w™, andq™ are
Stokes drift vanish at leading order if the surface-wave patJ1Ven by
tern is quasistanding, V -um+ g wm°=0, (64)
. (hO (o} i 2 O\ts
(VIV-(h°V ¢p)]+(h°V - V)V o+ (V ¢) V h°) atumo_ 82<Wm0(VWmo_ &Zumo_ azumﬂ

~uSio L
and V - (h°V ¢)s ~ wS4~ L2 if Eq. (47) holds.
(56)
Third, and according to Eq$49) and(52), we have
[V - (h°V )%l =O(L™), W*{=0L™. (57)

By using the continuity equatio®0), the boundary condi-
tion (38) can be rewritten agh™+w™+(h°V ¢)'*=0, which um™=0, wm=0atz=-d, (67)
invoking Egs.(21) and(57) yields, at leading order,

w"~ L tatz=0. (58)

+ (uSd+ umo+ umﬁL vV - umoJ_>ho
= - g2V g+ Y (VUM + FZum9)/2, (65)
ﬁth0+ 82<(uSd+ umo+ um3 -(VWmO— azumo_ é,zum3>ho
= = 20,40+ Y VWM + Zwm9)/2, (66)

in —d<z< 0, with boundary conditions

JU™=2(((Vh° - V) V ¢+ (V2¢) V hO)9,

wm=0 atz=0, (68)
Short- and long-wave decomposition of the mean flow

mo 0 M — mo mo M
We next decompose the mean flow variables inghart- (Um™,wm,gm)(x+ Ly,y,z,t) = (UMW) (XY + Ly, z,t)
wave component(or oscillatory in the horizontal direction =(umwm gm)(x,y,z1),

046306-6



PHENOMENOLOGICAL MODEL OF WEAKLY DAMPED... PHYSICAL REVIEW E 70, 046306(2004)

hM(x + Ly,y,t) =hMx,y + L,,t) =h™(x,y,t), (69)

where we have taken into account E§7). Note that this
problem is decoupled from that giving" [Eq. (62)].

In order to determine the equations governing the long-
wave component of the mean flow, we first take into account
that, according to the continuity equation and the boundary
condition (39), the rescaled vertical velocity component is

t
V2+ b+ 82< f azqs) V - (VW™= u™)

o [(f 5o vre]

t
- 82<J v ¢) 0, (VWM° = g,um— g,umS = 0

V -u™dz

given by
z
whs= - s‘zf (70
—d

(76)

for —-d<z<0, and boundary conditions

t
and, according to Eq(61), is of order unity as assumed 5tho—072¢+82(f Vd)) (VWMo = g,um— g,u™s)

above. The problem givingu™s,g™s,h™ becomes decou-
pled fromw™s as we show now. From the momentum equa-

tion (42) we obtain

"= g™ x,y.b), (71

and then, by invoking Eq57), the momentum equatiq@d 1)
yields

atums_ 82<WmO(VWmO_ (9ZUm0) + (USd+ umo)L vV - umoi>hs

=— Vq"S+ 9, u™y2 (72)
in —d<z<0, with boundary conditions
um™=0 atz=-d,
JU=2(((VHO- V)V ¢+ (V2h) VO™, (73)
g"-(1-T)h™=0,
0
ah™s+ Vv (f ums dz) ==V - (((h°V ¢,
-d
(74)

atz=0, resulting from Eqs(36)—(39) and(43). The periodic
boundary conditiong1?) lead to

MW g™ (x + Ly, y,zt) = (UMW, (X,y + Ly, z,t)

= (UMW g™)(x,y,z1),

h™S(Xx + Ly,y,t) =h™(x,y + L,,t)
=h™x,y,t). (75)

All terms appearing in Eqs(72—74) are of the same
order because/~ 2 [see Eq.(15)] and u™s, g™, and h™s
satisfy Eqgs.(21) and (61). The forcing term in Eq(74)b

V-((h°V ¢SS is inviscid, and is the only forcing term that

appears in the standard Davey-Stewartson mgzglwhich

involves a potential mean flow. This model is only valid for

stripes patterns as described below in E&8)—<86), where

this term is precisely the only forcing term remaining on the
right-hand side of Eq(86). On the other hand, the forcing

terms on the right-hand sides of E¢68) and(73) are nec-
essarily viscous and drive a vortical flow.

Substituting Egqs(59) into Egs.(26)—<(33), we obtain the
following equation(after some algebja

+&(V - (h°V )+ &2V - [(h"M+h™) V ¢+ ho(u™°

t
+u™) +(h°)?9,V /2] = )’f VA(d,9), (77)

i+ e(h°G,h)° + 7 (" + W™ p — W%,
+ (0?05, /2] + &(|V ¢ + [9,¢[)%12 + 7 (u™
+U™) - V g+ h°0L|V @7 + |0,¢]7)/12] + 4a(h® sin 2)°
+(1-D)h°=T'V -[Vh/(1+e]VhI) 2] + yiZ 4= 0,
(79

d,p=0 atz=—-d. (79)

This is the central result of this section. In the limit con-
sidered Eqg. (15)], flow variables have been decomposed into
oscillatory and slowly varying partfEq. (18)], where the
oscillatory components are given by E85), with ¢ andh®
given by Eqs(26)—«34). The slowly varying component has
been further decomposed into short-wave and long-wave
components in Eq(59), with the short-wave component
given by Eg.(62), and the long-wave one given by Egs.
(72—(74). Thus the coupled evolution of surface waves and
mean flowis given by Eqs(62), (64)—69), and (72)—(79).
This system of equations still includes the full 3D Navier-
Stokes equation@®5) and(66) with a large Reynolds number
based on the horizontal siZalthough anO(1) Reynolds
number is based on the container dépth

The numerical solution of this coupled problem remains
quite complicated, and further simplifications are necessary
to make it tractable. We discuss in the following section a
hierarchy of simplified models that are based on various
physical assumptions and in some cases on ad hoc approxi-
mations.

IIl. APPROXIMATIONS TO THE COUPLED
MEAN-FLOW-SURFACE-WAVE EQUATIONS

A. Stripes

In this particular case, the equations derived above sim-
plify substantially. Unfortunately in the nearly inviscid limit

we are considering stripes are not the selected pattern in 3D

[32], except in the purely gravity wave limit df <1. This

046306-7



VEGA, RUDIGER, AND VINALS PHYSICAL REVIEW E70, 046306(2004

would require that the basic wavelength/X" be large com- B. Linear approximation for the mean flow
pared to the capillary length.= o/ (pgo), which is of the The mean flow equations and boundary conditions Egs.
order of 3 mm for water. We consider first the strict gravita- 64)—68) and(72)~(74) are linear in the mean flow variables

tional limit of I'=0. If only one stripe is present at each except for convective terms. If these are neglected, then the

point, then we can takbi=1 in Egs.(49)—~(52) at this point,  mean flow equations are rewritten as E6) and
and the short-wave parts ofiS¢ and ((Vh°-V)V ¢

. . .. . t
+(V2¢) Vho)'S vanish in Eqs(64)—(6§). This implies that the V24 + f9§z¢+82<f r?z¢> V (VW™= g,umo)
short-wave part of the mean flow is unforced, and thus ad-

mits the solutionu™®=0, wm°=0, q™°=const which we as- t n t

sume is globally stable. Then for large times such that the +82V {(f V¢> \v/ .umoL] _82<f V¢) - 9,(Vwme
short-wave component vanishes, the remaining variables are

given by Eqs.(26), (31)—«33), (62), and(72—74). By also — U - U™ =0, (88)
invoking Eg.(61), these latter equations can be rewritten as

V -um+ g wm°=0, (89

t
Vip+ R+ 82< f V¢) (0 AM=0. (80)
U= = 2O+ AVAUTO+ FUM/2,  (90)

AuUMS=— V h"S+ 59, u™y2 (81) GO = — 29,00+ Y(VIWTO+ ZWT)/2,  (91)

in —d<z<0, with boundary conditions HUTS= — V g+ yd, uMY2, (92)
dp=um=0 (82 in -d<z<0, with boundary conditions

atz=-d and dp=0, uT°=u™=0, wr=wm™=0, (93

atz=-d, and

t
oh® =, - 82<f Vd,) UM+ g(V - (°V ¢))°

t
ahP = d,¢p + sz(f qu) (VW™ = gum0 = g,u™)
+£2V -[(hM°+hM) V ¢+ hou™+ (h°)24, V ¢/2]

t +&(V - (h°V ¢))°+ &2V -[(h™°+h™) V ¢+ ho(um°
=y f V4(3,4), (83) t
+u™) +(h%)?%3,V ¢/2] =y J V4(9,9), (94)
i+ e(°T ) + 2[ ("M + h™) oy p — 3,0+ (h°)235, /2]
+&(|V B2+ [0,D/2 + £7[u™- V ¢+ h°a,(|V ¢|2
+|d,2)12] + 4a(hC sin )+ h° + y2,4=0, (84)

dup+ e(NCTp)O + e[ (MO + W™ g — MG, ™
+ () 205, p12] + e(|V |7 + ] 0,¢D'12 + 2 (U™
+U™) - V ¢+ h°0/|V ¢l* + |9,¢])/2] + 4a(hC sin 2)*°

JUMS=2(VhC- V)V ¢+ (V2¢) VhOSH™S (85) +(1-T)h°-TV -[Vh(1+&3Vho[)Y2] + yiZ = 0,
o (95
S U L dz) R Al WPZ0, 4U™= 2(VH- V)V ¢+ (V28 VhEYSTe,
(86) (96)
at z=0. The periodic boundary conditions in the horizontal JUT=2((VHC - V)V ¢+ (V2) VhOYS)S,  (97)

variables resulting from Eq12) are
(6,0 (x+ Ly, zt) = (1) (xy + Lo, 21)

=(¢,h9)(x,y,z1), Gh™S+ V. (f yms dZ) =-V . ((h°V ¢>ts>h5),
-d

(h°,h™°,h™9)(x + L4,Y,zt) = (h°,hM°h™9)(x,y + L, z,t) (98)
=(h°,h™ h™)(x,y,zt). (87

gms-(1-T)h™=0,

0

= (L=D)h"+ VM= (W5 + (V ¢ + [9,¢[2)/2)'9",
These equations are considerably simpler as they only in-

clude the heat equation, E@1), instead of the full continu- (99
ity and Navier-Stokes equations, but yet allow significantat z=0; and periodic boundary conditions in the horizontal
variation in stripe orientation. direction as in Eqs(69) and (75).
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This linear approximation exactly provides the first bifur- 0
cated branch of standing wavé8Ws from the planar base B1=9(0) > O,Bz=f 9(2dz> 0. (108
state with associated mean flow that is unfor¢ede EQq. d
(56)] and thus identically vanishes at large times. This ap-
proximation is also exact for the linear stability of the SWsNote that ifg is given by Eq.(102), then
and, in particular, for the instability threshold of this branch,
namely the threshold amplitud it is finite) for the appear- — _
ance of transverse amplitude modulatigig\Ms) [5]. Fur- B1=V\2Md, B,=8d/r. (109
thermore, we expect that the neglected convective terms do

not play a significant qualitative role in subsequent blfur-.l_he complete set of equations also includes B8) and the

cated branches of TAMs, at least near threshold. In add'tlo%llowing equations and boundary conditions which follow

this approximation is almost exact for stripes because con: .
vective terms can be neglected in this case, as already exom Egs.(88), (94), and(95):

plained in Sec. Il A.

t
C. Two-dimensional approximation Vg + 3§Z¢ + 829”(2)(f f Vq')) ~(UM+ UM =0,
We introduce next &drastig single-mode approximation
for the z dependence of the mean flow variables in Egs. (110
(88)—«98). We write horizontal velocities as
u™=g(zUM, gM=g(z2)QM°, u™=g(zx)UMs in —-d<z<0, with d,$¢=0 atz=-d, and
qm°=g(2Q™, (100 ah® = a,p+ &(V - (N°V ¢))°+ 2V -[(h™+hM) V ¢
where the functiory is such that + Bh°(UM+ UMY ]+ 2V -[(h°)29,V ¢/2]
0 t
g(-d)=g'(0)=0, J 9(2*dz=1, = 7f V2(9,9), (111
-d
0
g(0) >0, J_d g(zdz> 0. (10D o+ 8<h0(5’t22¢>t0+ 82[(hmo+ hm5)3t22¢+ (ho)23t322¢/2]

. o . . +&(|V p|? + |0,0|D)12 + €7 (UM + U™ - V
This function is otherwise arbitrary and can be selected to oV I+ 061 1Al ) ¢

yield the best approximation to the vertical velocity profiles. +h0a,(|V ¢|? + | 0,4|?)/2] + 4a(hC sin 2)°+ (1 - T)h°
A reasonable chomei TV - [VhU1 +82|Vh0|2)1/2] + Vﬁfzfﬁ: 0, (112
9(2) = v2/d sin [w(z+ d)/(2d)], (102
which satisfies at z=0. Equationg62) and (104—(112 must be integrated
with periodic boundary conditions in the horizontal direc-
=\ ; _ i tions, as above. Note that the mean flow does not contribute
g'=-\g, withA=—. (103 . :
4d to the averaged energy equation at leading ofdee Eqg.
By using this simplification, Eqg89), (90), (92), and (98) (39)-
reduce to
vV .um=0, (104) D. A phenomenological description
o 5 o o o " We finally discuss the simplest possible approximation to
GUT=— g2V QM+ ¢(VUTO - NUT)/2 this problem by considering a phenomenological model of
+ BAU(VIC - V)V b+ (V2) V hOySho] Faraday waves that qualitatively describes its primary bifur-

10 cation and secondary instabilitig33]. It involves a complex
(109 order parametey that satisfies

UM == V QM= AU™2 + B ((Vh°- V)V ¢ -
+(V2¢) V hoyse] (106 G == g+ i+ A+ V)9l + (1= ya)lgfy.
(113
BlQms_ (1 _F)th: 0'

_ A derivation of this equation is given in the Appendix. The
ms .1 |ms i (o} ts\h —

G+ BV U™+ V- ((h°V 4)97)720=0, (107) order parametey is a linear combination of the free surface
with deflection anda vertical average ¢fthe velocity potential,
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he=ye'™+c.c. p=-ige'+c.c.,orgp=e"“(h° GUMS= — ¥V QMS— )AUMY2 + B /i (Vb V)V o
rig)2. (1149 Fi(V2ZP)V g+ o)l (120

Despite its simplicity, the order parameter model qualita-

tively describes some of the features of the Faraday instabil-

ity: The linear dispersion relation coincides with that of the

fluid in the limit of low viscous damping, and the model BQ™ - (1-T)h™=0,

exhibits a primary bifurcation to a standing-wave solution

near threshold, which can be either sub- or supercritical at

threshold depending on the wave number. Also, stationary o

solutions are in turn destabilized against amplitude and phase ™S+ B,V -U™+ V - (i(yV ¢>h5+ c.c)=0.

modulation instabilities. For sufficiently high supercriticali-

ties, the solutions of Eq113) exhibit spatiotemporal chaos.

Consistent with the weakly dissipative limit we are consid-

ering in this paper, we must assume that

(122)

We also require thatcf. Eqs.(103) and (108)]
y<lf<1]al~1. (115

This model has already been used by Kiyashkal. [34]
to understand how mean flow effects might induce rotating BiIN=16/m2, BB, = 4lm. (122
patterns in a Faraday wave experiment. Conjecturing that
rotation was somehow due to the mean flow produced by
surface waves, they added a convective tetmV-¢ to the Equations(119—(121) imply that Um=UMm=0 as ;0.
right-hand side of Eq(113), whereu was a velocity field  N\ote also that the mean flow is unforced if the surface waves
that was given independently af, thus ignoring any cou- 4y standingthe phase ofs is independent of positigras all

pling between surface waves and mean flow. forcing terms in Eqs(119—(121) vanish.
Here we shall add a similar term to the right-hand side of

Eq. (113 but, given the analysis above,evolves with the
surface waves according to a phenomenological equation

with the appropriate symmetries. First we replace @4.3) IV. SECONDARY INSTABILITIES OF THE
with PHENOMENOLOGICAL MODEL
dp ==y +if g+ Bi(L+ V) l4 + (i = ya)|f?h = B (U™ In order to obtain a qualitative picture of the effects of
+UM) .V (116) mean flows on surface waves, we study in this section sec-

ondary instabilities of the base periodic solution of the order
as suggested by Eq&l11)—(114). Note that we are not in- parameter model defined by the coupled EEl3) and
cluding any dependence d¢'° andh™s, because this is be- (118121 of Sec. Il D. Generally speaking, we find that
yond the scope of this phenomenological model. The coumean flows couple weakly to transverse phase modulations
pling termis not conservativdor general initial conditions, and hence do not appreciably modify the zigzag boundary.
which is not optimal. However, this term may be seen to leadlransverse amplitude modulations are affected by mean
to a conservative contribution at leading order for solutiondlows, the latter generally being destabilizing. Mean flows
that are linear combinations of plane wajes in Eq.(46) also increase the region of instability against longitudinal
abovg. Sincey is intended here to only model the spatially perturbationgEckhaug and, more importantly, introduce a

oscillatory part of the flow, we require that finite wave-number longitudinal instability which for certain
values of the parameters can render much of the parameter
(y=0. (1170  space in which periodic solutions exist unstable. This insta-

o bility branch is of an oscillatory nature, and arises at the
The contribution from the mean flow appears throud®  merging point between the branch that corresponds to long-
andU™:, which are the short- and long-wave components ofyavelength longitudinal modes af and a hydrodynamic
the mean flow defined above. Their evolution is given bypranch which is weakly damped &s-0.
Egs. (104—107) but replacingh® and ¢ by « according to The trivial solution=UMmC=UMS=QM°=QMS=h"Ms=0 be-
Egs.(113) and(114), comes linearly unstable against a periodic perturbatio of
of wave numberq for u> ud(q)=\1+[3(1-¢?)/4y]*-1,

v.um=0, (118 ihe neutral stabilit i i
y curveu is the control parameter defined
as u=(f-+)/y. The critical modeg=1 becomes unstable at
UM = - g2V QMO+ (V2UMO - \UM9)/2 u=0.
) — ho For small «>0, stationary and periodic solutions exist
+BAIV- V)V §+i(VEh) V g+ cc)™, that can be approximated by a single Fourier majgéx)

(119 =ay cogax)expi®,) with
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4 1
-1~ éa;ﬁ + §v16f2(1 +a?yP) — [4y+ 3ay(f - D]

2 _
ag= 1+ (ay)? : (123

where the * sign stands for sgn-g?+4a?/3), and®, sat-  nonlinear termd\N@. Equations for the perturbation ampli-
isfies sin ;@q:(1+3aa§/4) ylf, cos @ng(q2—1—a2)/f_ tudesu®, ¢, andd" are derived by linearizing Eq&120) and
Note that the bifurcation at threshold is subcriticabft>1 (121 with respect to all the perturbation amplitudes, after
+3ay?/4=1 (recall thaty is smal) and supercritical other- substitution of Eqs(130) and(131), and by extracting those
wise. This solution for the order parameter leads to vanishingerms that are proportional &:
driving terms in the mean flow Eq$118—(121); hence all I\
mean flow variables remain zero for the base, periodic solu-  gu* = -ikd" - 7u+ +2819A0[(q + k) (202 + gK)
tion.

In order to address the stability of the stationary solution x(@*-a )+ -k -gk@-a™],
(123) against longitudinal perturbations, we introduce

(132
= Aolexpligx) + exp(—iqx) +a""exyi(q + k)x]
+a"exdi(q - kx]+a "expi(k - q)x] Bd"=(1-T)c, (133
+a "exg - i(q+ k)x]} (124 dc*" = = Boiku* — ik|Ag[[(2q + k) (@™ —a ™)
[where AO:%aqexp(i(Bq)], together with the corresponding +(2g-K@*-a™)]. (134)

perturbations of the mean flow variables ] ] ) ) )
Finally, the governing equations for the perturbation ampli-

Uy°=u'explikx) +c.c., (125  tudes of the order parameter are obtained by linearizing Eq.
(116) and extracting the amplitudes of the Fourier modes
h™s=c*exp(ikx) + c.c., (1260  expi(xg+k)x. For example, the governing equation &
and IS
mS— J*ayn(i 3i
Q™=d"expliky) +c.c., (127) gart=—ya™t+ it o JA-@rk%a+ i-ay)
where U™°=0 as seen from the incompressibility condition Ao
(118), and the definition oi™°=0 (60), which require that X|Agl%(4a™ +2a " +a* +2a™*) - Biiqut. (135

no=0 and(U™hs=0, respectively. o _ ,
By inserting Eq.(124) into the nonlinear terms of Egs. Similar equations result for the 'oth'er three amp'lltudes..
(120 and (121), We now have a system _of 5|x_f|rst-order ordm_ary d|ﬁer_-
ential equations which is linear in the perturbation ampli-
NY=i(Vi- V)V y+i(V2h) Vp+cc., (128  tudesa™, u', andc™. The matrix of right-hand side coeffi-
cients is denoted by(g,k,e,...), and is a function of the

wave numbers of the base solutiqrand of the perturbation

.
N'=lyViy+ec., (129 k, of the control parametes, and of the other parameters of
and retaining only the long-wavelength components, we obthe model. The base solution becomes unstable when the real
tain part of any eigenvalue of this matrix becomes positive. We
_ _ have numerically obtained the eigenvalues of the mairix
(NS = idgapdiyy + c.. €)= 2| Ag*{[q + a™*(q + k) e~ and determined the region of stability of the base solution.

Two types of instabilities are possible: a standard long-
_ _ _ wavelength Eckhaus instability which depends on the mean
-k +[-g+a(k-qe*-a(q+ke™][g>  flow, and a finite wave-number oscillatory instability, which
Tt _ o\ 2enikX L o 2_ikx is completely due to the mean flow. As was the case in the
ta(k-ge™ra (gt rec, (130 asymptotically exact equations for one-dimensional Faraday
waves[12], this latter instability only occurs with nonzero

+a"(q-ke™[g*+a""(q+ k% +a"(q

(N =(ighap+ c . c )= [AgH{(1 +a* e +a* e [q mean flow. Both instabilities will be discussed further below.
+a(q+ ke +a(q- ke + (1 +a ek The stability of periodic solutions against transverse am-
_ - T _ plitude and phase perturbations can be studied in a similar
+a e [-q+a (k-ge-a(qg+ ke fashion. Given that,,=0 in the base state with zero mean
+cc. (131) flow, terms involving they components of the mean flow

_ will be of second order in the amplitudes of the perturbation
respectively, WhereNf(”") denote thex-components of the and hence only the componerit§™ and U} need to be
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perturbed. However, and in contrast to the case of a longitu- ~ #e=t
dinal perturbation, both short- and long-wavelength compo-

nents of the mean flow need to be included. Furthermore, the ->¢*
equations folJ}'° andUy'° decouple at linear order, and they 0.562 Lo
can be analyzed separately. We show next that onlyuffie 0.56 Lo
part modifies the transverse amplitude modulatidAM ) Lo’
instability line, whereas the zigzag line is not affected by ©-558 .-
either component. 0.556 P

We start by considering the short-wavelength component | o - - - =~ ’
of the mean flow velocityJy'°, and introduce the following ~ 2-3%4 ms
perturbation for the order parameter: 0.552

= Aofexpligx) + exp(—igx) + a""exfi(gx+ky)] = =B

+aexdi(gx—ky) ]+ a "exdi(- gx+k
Hi(g 2 Hi(-q vl FIG. 1. This figure illustrates the weak destabilization of the

+a exg-i(gx+ky)l}, (136 base solution against transverse amplitude modulations due to the
coupling to mean flows. Shown are the critical values for instability
UP°=v*"exdi(2gx+ky)] + v exdi(2gx-ky)] + c.c., Uer arising from either the long-wavelength component of the

(137 mean flow velocity along“ms”) or the short-wavelength compo-
nent along“mo”) as a function of the coupling paramei@y. The

and base solution is stable above the corresponding lines. The figure
Mo 4 ) . . shows that the “ms” component of the flow does not appreciably
QM= p"exi(2gx+ ky)] + pexdi(2gx—ky)] + c.c. modify the stability threshold, whereas the effect of the “mo” com-

(139 ponent is to weakly destabilize the base solution with increg8ing
. o The wave number of the base solutiorgis1.04, and we have used
The amplitude of the mode“™ in the x component of the  y=0.1,4=0.5, andl'=0.8. The parametes, spans the range be-

nonlinear forcing term of Eq119) is tween no mean flow and the approximate value that corresponds to
— — — the weak viscosity but shallow layer experiments of RBf. The
ho — h
(N = <[§x‘/"9§’p+ Iy duyip + (&i'/"" 35‘#)(&‘/’] +c.e) values ofB3, and\ depend ong; according to Eq(122).
(139
— 2 =+ +-\ ik == ++) oiky] ol 20 ; K0_ 3i 2_ 1,2
=A%k (@ —aM)e™ + (@ -a"™)eVe**+cc., aby = - yb1+|fA—0bl+ S (L= =KD,
(140
3 . J—
where in Eq.(140) only terms linear ina** anda** have + Zag(l —ay)(2by+by) - 2B1qvy, (149

been kept. The pressuf@™ is calculated by taking the di-
vergence of Eq(119),

0=-V2Q™+ By aN. + AN, (142)
B1y(,N; yNy P :_Z(4q2+k2+h)v _m(IZ qk4 m

01T 75 o4 T+
0= (40?+ K)p** + By 20| A Pqk@ " -a™), (142 e

and a similar equation fop*~ (here we have used the fact

. v ho_ . .
that one obtainéNy)"°=0 at linear order We then derive the 1,5 qjevance of mean flows on this perturbation is demon-
following linear system of equations for the perturbation am-gi4ted in Fig. 1, showing the stability boundary in the plane

and is thus eliminated by using b;.

plitudes: (B1, ) at fixed wave numbeq and model parameters. With
;0_ 3i increasing mean flow coupling;, the region of stability of
gatt=—qyat+if—a T+ —(1-¢’-k)a"t +(i-ay) the base solutiofregion above the dashed line in the figure
Ao 4 decreases.
X|AgX(4a™ +2a " +a " +2a7") + Bliqu*T, (143 Alternatively, a transverse phase modulati@igzag is
given by b,=a""-a""-a"+a~ andv,=Im(v**-v""). We
N IR , o find in this case
v = 2( q v :817|AO| 4q2+ kz(a am,
(149

- ; KO_ 3 2_ 12
with similar equations foa*", a™*, a**, andv*". oy = = b + 'fA_Obz + Z(l —q° = k)b,
A TAM is defined by the linear combinationis;=a** L
+a” +a"+a~ andv;=Im(v**+v*"). From Egs.(143) and NS 2b, + b — 2 14
(144), we find a closed system 4%( @y)(2by +0p) = 21quz, - (147)
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(a) '
_ Y0 2 By » qk4 u P
dwa=— (A + K2+ N, — Im b,
w2=" 3 P2y g™ finstants,
(148 o.125}

From the eigenvalue equation of this system, it can be showr °**f

that modifications to the eigenvalues dueutp appear at
higher order ink. Since the zigzag instability occurs in the
limit k— 0, we find the effect of mean flow to be negligible .05
in this case.

A similar analysis has been performed for the long- °-025;
wavelength component of the mean flow with perturbations
of the formUJ*=u* expliky) +c.c.,hM=c*exp(iky) +c.c., and
QMs=d*exp(iky) +c.c. Theorder parameter is again given by
Eq. (136). As shown in Fig. 1, the contribution of the long-  #
wavelength component of the mean flow to transverse modu o.1s} 1+ TAM
lations is negligible. s unscanie

We now turn to a summary of our numerical results about’**°
the base periodic solution. Figure 2 shows the various stabil- ; , |
ity boundaries for the special casesi=0 (no mean flowy
and B,=0.5. Other values of the parameters used @re o0.075}
=0.1,«=0.5, andl’'=0.8. The values oB, and\ depend on Eckhaus unstable
p, according to Eq(122). Except for e, these parameter °| e
values correspond approximately to the values for the low-, .51 vertt ’
viscosity experiments of Kudrolli and Gollub described in o e )
[5]. For instance, typical experimental values @f= V2/d - - o1 02 03
(whered is the dimensionless height of the layere be-
tween 0.5 and 1.2. Figure 2 includes the neutral stability FIG. 2. Stability diagram fo(a) the order parameter model of
curve of the basic periodic solution and, since the primaryEg. (113) without mean flow, andb) with 8,=0.5. Other values of
bifurcation is subcritical forq>1, we have included the the parameters used age=0.1,¢=0.5, andl'=0.8. We show the
saddle-node curve where the periodic solution bifurcgaes Eckhaus lingdotted, TAM line (dasheg} and the zigzig ling¢dash-
subcritical bifurcation fog> 1 asy— 0 has also been found dotted. We also show the neutral stability curve of the primary
in a direct numerical solution of the governing fluid equa_ins_tability_ (s_olid line denoted byN), and a saddle-node bifurcat?on
tions in two dimension$35]). The casg3;=0 is shown as a _(thlck solid line mfirke(S). Only the left br_an(_:h o_f the Eckh_aus line
reference, and it agrees with the result38]. is shoy\(n emgnatlng fro@zl,uzo). This |In§ is parabolic n.ear

The range of base solutions that is stable against all peff® critical point, but quickly bends to the right as shown in the
turbations considered hetEckhaus, TAM, and zigzags a figure. He_nce tr_u_a region of s_tablllty of the base so_lutlon agalns_t an
small region close to threshold a0 between the TAM and Eckhaus instability is the region below the dotted line. Comparlson

. ; D . . of (a) and (b) shows that the mean flow decreases the regions of

zigzag lines. Periodic solutions are stable against transverss?abi"ty against Eckhaus modulations and to a small extent against
perturbations below the dashed-dotted line in the figaig-

n . transverse amplitude modulations. (&), the region of stability
zag, denotedZ*), and above the dashed lig@AM). Eck- against all perturbations is shown by the gray area. This region is

haus perturbations have a negative growth rate below thgg qicated inb) since these solutions are unstable with respect to
dotted line. We observe that with increasifg, both Eck-  he oscillatory instbility[38].

haus and TAM curves are shifted so that larger regions in the
(m, Q) space become destabilized with respect to TAM or The inset in Fig. 3 illustrates the origin of the oscillatory
Eckhaus perturbations. As discussed above, the zigzag line iisstability. In the limit ofk— 0, there are two distinct eigen-
not affected by the mean flow. value branches that have a small and negative real part. The
We finally discuss a new oscillatory instability against upper branch is marginal &=0 and is related to the trans-
longitudinal perturbations which is absent {8y=0. The os-  lational symmetry broken by the base statgx). On the
cillatory nature of the instability is demonstrated in Fig. 3, other hand, the mean flow velocity vanishes in the base state,
which shows the real and imaginary parts of the corresponderiginating the lower branch which is weakly dampedkat
ing critical eigenvalue branch as a function of the wave num=0. The damping rate of the relevant mode for longitudinal
ber of the perturbatiork for fixed g,u, and other model perturbationgU}" is yA/2, as can be seen from E{.20).
parameters. The imaginary part of the eigenvadués not  As k increases, the twgreal) eigenvalue branches merge,
zero at the point in which Re)=0. This figure also shows |eading to a complex-conjugate pair and to an oscillatory
that the instability occurs at small but finite wave numker instability.
a fact that has been confirmed by calculating the wave num- |f the eigenvalue problem for the Eckhaus-type perturba-
ber with the largest growth rate both slightly above and betions is expressed by the real and imaginary parts of the
low the instability threshold gtz=0.1155. coefficientsa™ ,u*, andc*, two pairs of complex-conjugate

0.075¢

(b)
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0.0 0.0001
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-0.00006 |
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X
-0.00005
=-0.00008"
Im o(k)
0.015
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0.005 *
FIG. 4. Critical eigenvectors corresponding to the oscillatory
instability at3;=0.2,q=1.0, ©=0.1318, ank=0.04. We show the
. . . . . temporal evolution over its own peria@ertical axig to illustrate
0.005 0.01 0.015 0.02 0.025 Xk

the nature of the critical modes. The eigenvectors are represented by
the x component ofu™s (a,0 and the amplitude of/ (b,d). The
evolution is obtained from the two critical eigenvectarsof the
complex matrixA(q,k, ...) with eigenvalues itw. Left and right
traveling (a,b waves are given by the evolution of€®% and
v,e7 ! respectively. A standing wave is obtain@d) by superpo-
sition of the evolution from both eigenvectors scaled to equal am-
litude. The actual solution faf is obtained from the superposition
the plotted eigenvectors with the base solution, see(E2f).

FIG. 3. Real(top) and imaginary(bottom) parts of the largest
eigenvalue foB;=0.2,.=0.1318, and|=1.07. The inset shows the
region neak=0.

eigenvalues cross the imaginary axis at the instability point
Therefore, the effective dimensionality of the critical sub-
space is 4. This can be understood from the symmetry grou
of the system of Eqs(132—(136). These equations are in-
variant under a spatial reflectigexchanginga** with a™,

a*~ with a™*, and u™ with —u™) and rotation[acting on
a** and u* as multiplication by ex@®) and ona* by
exp(—i®), where® is arbitrany] that derive from the symme-
try of the original equations. The corresponding symmetry *
group Q2) has two-dimensional irreducible representations,?-14

which in turn requires each eigenvalue to occur twice. At, ,,
threshold, the eigenspace of the linear system is spanned t .
four linearly independent eigenvectors, two for each pair of °-!

the complex-conjugate eigenvalues. Symmetric bifurcation, g :
theory shows that for generic bifurcations witiZpsymme- \
try, the nonlinear solution branches are standing and travel®-%6 K
ing waves [36]. Examples of the temporal evolution of  ,,
eigenvectors of both types are plotted in Fig. 4. In practice,

the specific values of the parameters determine the way thP-%2

standing and traveling waves bifurcdt&/]. If both are su- q
percritical, the one with the larger amplitude would be stable, 104 1-05 1-06 107
the other one unstable. FIG. 5. Stability boundaries of the oscillatory instability for

We finally show our results concerning the location of thethree values ofg;: 0.05 (dotted ling, 0.2 (dashed ling and 0.5
oscillatory instability boundary as a function gffor two  (solid line). The thick solid line indicates the saddle node. Periodic
values off3; in Fig. 5. Stable regions are located to the rightsolutions are unstable to the left of the curves. Comparison with
of the plotted curves. As expected, the stability boundaryFig. 2 shows that all periodic solutions are unstable and the pattern
moves toward the Eckhaus line with decreasthgpresum- is expected to be time-dependent.

046306-14



PHENOMENOLOGICAL MODEL OF WEAKLY DAMPED... PHYSICAL REVIEW E 70, 046306(2004)

ably merging with it for3;— 0. Note that forB;=0.5, the one considers the slow dynamics of defects in the wave pat-
unstable region covers most of the region of existence of théern. Defects as local perturbations of a regular pattern drive
base states except for a narrow stripe close to the saddleiean flows, which in turn affect defect motion.

node bifurcation.

ACKNOWLEDGMENTS

V. DISCUSSION This research was partially supported by the Spanish DGI

The coupled system of equations describing fast surfacender Grant No. BFM2001-2363, and by the U.S. Depart-
oscillations and slowly evolving mean flows in three dimen-ment of Energy under Contract No. DE-FG05-95ER14566.
sions has been derived. Mean flows are forced by the surface
waves by various mechanisms. For a particular choice of APPENDIX: ORDER PARAMETER MODEL
geometry and limit of parameters which are relevant to re-
cent experiments, we have shown that two contributions ap- We briefly summarize in this appendix the derivation of
pear at the appropriate order in the multiple scale expansiorthe phenomenological model given by Ed13 of Sec.

A viscous streaming flow forced at the free surface withlll D, first introduced in Ref[33]. We follow the description
components of both similar and larger scale compared to theriginally introduced by Zakharo{y38], and later of Craw-
length scale of the surface waves, and a long-wavelengtford, Saffman, and YuefB89] in their study of the nonlinear
component originating from slow distortions of the surfaceevolution of deep water gravity waves in an inviscid, incom-
elevation that exists even in the absence of viscosity. pressible, and irrotational fluid. Their analysis can be

The analysis presented has illustrated the importance aftraightforwardly extended to a parametrically driven fluid,
mean flows in the Faraday wave system for small viscougnd linear viscous damping is added in a phenomenological
damping by determining the stability boundaries of the basavay. All the variables used in this appendix are assumed to
pattern of standing waves against long-wavelength perturbde dimensional quantities.
tions. Since the full system of surface wave/mean flow equa- The governing equation for the inviscid fluid is
tions is quite involved, we have instead carried out the sta-
bility analysis of a phenomenological order parameter (VZ+H)p=0, -w<z<h(xt), (AL)
equation, similar in spirit to the Swift-Hohenberg model of N
Rayleigh-Bénard convection. In addition, we have limitedWith boundary conditions at the free surfazeh(x,t),
the analysis to the simplest regular pattern consisting of
stripes. Mean flows are induced by perturbation of the gh+ Vh-V¢=d,p, (A2)
stripes, and their coupling to the order parameter equation
affects the stability of stripe solutions. We have found that

the mean flows generally destabilize the base solution. The o + %(V¢)2+ %(az¢)2+ [go+g,(t)]h
strongest coupling, and hence the strongest destabilization,

occurs for longitudinal or Eckhaus perturbations. Further- o Vh

more, mean flows introduce a new oscillatory instability _; ' \1+—W ’ (A3)

which for small nonlinear damping in the phenomenological

model renders all stripe patterns unstable. A weaker effeGliw,  the interfacial tension ang the density of the fluid
has been found for finite wavelength transverse amplitudg,.; is being vibrated with acceleratirg,—g,(t)] in the z

modulations which largely couple only to the short wave Partyirection. It is well known that this problem admits a Hamil-

of the mean flow. . . tonian formulation with the Hamiltonian
Ouir first remark concerning experiments follows from the

existence of a longitudinal oscillatory instability. Within the 1 h(x,t) 1
phenomenological model, all stripe solutions which are H== f dxf dz{(V¢)2+(&z¢)2+ —[go+ g,(t)]n?
stable in the absence of mean flows are unstable against lon- 2 — 2

gitudinal oscillatory perturbations for sufficiently large cou- o
pling parameteiB;. One would then expect time-dependent +—=[V1+(Vh)?- 1]}, (A4)
behavior at onset. The eigenvectors corresponding to the os- p

illatory in ility (Fig. 4) show that th i mean . . _
cillatory instability (Fig. 4 show that the associated mea where the velocity potential further satisfies the boundary

flow consists of large-scale rolls with their axis oriented par- e - ; ) .
allel to the surface. At the surface, it advects the waves |eaoqond|t|on Izp=0 asz— —c. Th? canonically conjugate vari-
ing to compression and dilation of waves similar to Eckhausable.S are the surface dseflectlbfx,t) and the velocity po-
perturbations, but in the form of traveling or standing wavesential on the surfaces*(x,t)=¢(x,z=h(x)). Phenomeno-

A numerical solution of the coupled order parameter mearc9ic@l damping can be ||;1troduced by considering a
flow equations shows that the compression not only leads tgissipation functiorQ(h(x, 1), $%(x,t)). The resulting canoni-

a decrease in wave amplitude, but can also result in a conf@l equations of motion are

plex cycle including the annihilation of stripes, possibly due

to a different instability triggered by the compression. We Gh(x,t) = ———— (A5)
also anticipate novel phenomena arising from mean flows if T 8S(x, 1)
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Shp3(X,t) = — PV +Q(h(x,1), #5(x,1)). (AB) db(k,t) + 20kTb(k, t) ~b(- k,)] +iw(K)b(k,t)
X, t .
’ ikg,(t) = _
The functionalQ determines the rate of viscous dissipation * 2w(k) [b(k.t) + b= k.t)] + NLL(blk, ) =0
in Egs.(A5) and(A6) so that (A12)
dH oH N where NZ(b(k ,t)) stands for terms nonlinear in the ampli-
pPriieves f dxQ(h(x,t), p*(x,t))dh(x,t). (A7) tudesb.

If the driving acceleration is given bg,(t)=a cost,
Of course,Q=0 corresponds to the inviscid limit. only amplitudes with wave number close to the critical wave
The case of a fluid of low viscosity has been treated byhumberk, are excited near onset, with frequency close to the
assuming that energy dissipation is dominated by potentiglesonant frequency(k,)=/2. We introduce a conventional
flow in the bulk[29]. The functionalQ can then be deter- muyitiple scale expansion near onset, but choose to do in a
mined by equating the rate of dissipation in E47) to the  manner that will preserve the rotational invariance of the

rate of energy dissipation due to potential flow, original governing equations. We further assume the follow-
ing scalings for the damping and driving term)s’::2vk§
J dxQ(h(x,H), #(x.H)3N(x,1) =<0 andf’ =kea/[4a(ky)|=fo, wheree is a small expan-
sion parameter, and boty, and fy are O(1) quantities. We
h(x,t) also expand
Vf dXJw dzv (V¢) . (A8) b(k,t) - EB(k,Tl,Tz)e_lw(ko)t+ ezbz(k,t) + 63b3(k,t) Foeee
(A13)

This equation has been used to detern@nerder by order in
an expansion in the surface wave steeprid8s41]. To the  with T;=et andT,=¢€%. The slow time scald@; corresponds
order relevant here, one finds, to the time scale of translation of a wave packet, whefigas
is the scale of change in the modulation of the wave packet.
Q(k,t) = — 4k2¢%(k,t) + (nonlinear termg~ (A9) ~ These two time scales are consistent with an expansion of
the inviscid dispersion relationw(k) = w(ko) + €0’ + €'’
whereQ(k, 1) is the Fourier transform of. As discussed in +-** for modes near the critical wave numtgr Substitution
Refs.[10,11], this approximation yields, by construction, the Of Ed. (A13) into Eq.(A12) shows that the equation is iden-
correct rate of energy dissipation at linear order, but not thdically satisfied atO(e). At O(e”), we obtain the following
correct equations of motion even at this order. In particular, i§0lvability condition:
overestimates by a factor of 2 the damping force in B®.),

and omits wave rectification in EgA5) that arises from the 9B ——iw'B. (A14)
rotational component of the flow in a thin boundary layer aTy

adjacent to the free surface. _ _ The solvability condition at orde®(e%) is

Following Zakharov{38], we define a complex field
(9B Y HENA]
w(K) ~ _ K - Fraiain YoB(K) —ifB(- k) —iw’'B(k) + NL[B]
b(k,t) = \/ - —h(k,t) +iy/=——¢ k1), (A10) Lk
2k 2w(k)

(A15)

where h(k,t) and ¢%k,t) are the two-dimensional Fourier with a known nonlinear functional/Z[B]. We now combine
transforms ofh(x,t) and #%x,t), respectively, andw(k)  the two solvability conditions by writingA(k)=€B(k) and
=\gok+0k3/ p is the inviscid dispersion relation. In terms of 5A= 62‘9T18+€3aTZB and find

this new variable, the Hamiltonian systg¢ab) and(A6) can

be written as IA

SCE VAR - it A(-K,t) —i(ew’ + €0’ AK,1)

Qk,b. (ALD) + NZ[A]. (A16)

abk,t) =i _5H +i a

sb(-k, 1) 2w(K)
Hence the slow evolution near onset given by EJL6) is

Equation(All) is now expanded in a power seriesibfWe  the same as that of the original set of inviscid equations

confine ourselves here to linear termijras nonlinear terms supplemented by phenomenological linear damping.

will be added phenomenologically. However, explicit forms  From the inviscid dispersion relation, we find

of cubic terms inb have been obtainef42] both for the

present case of an expansion around the inviscid solution, e’ + €'’ =c;(K? - kj) + cy(k% — kd)2 + O((k — ko)®),

and also for the linear damping quasipotential equations of (A17)
Ref. [11].
By expanding Eq(Al1l) in power series ob, we find with
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_ Yo 3ok,
% gaky)  dpalko) (A18)
and
_ 1 3Uko_(go+30kg/9)2_&)
C2'4k%w<ko>( ap | Bolkg? 4k ALY

PHYSICAL REVIEW E 70, 046306(2004)

y=7'l w(kg) =2vk§/ w(ko), and R=R'/w(ky). By choosing
1/4R as the order parameter scale, Et{3) results in the
capillary wave limit. The positive sign of the imaginary part
of the nonlinear coefficiertt-ay+i) in Eq.(113) is chosen to
represent capillary waves. In the opposite limit of gravity
waves, the imaginary part of this coefficient has to be nega-
tive. Note that as a third simplification we have eliminated
the termi(1+V?)?2y in Eq. (113), as this term together with

We derive next a reall—_spa'ce order parameter quel frorp(l+vz)lr,, leads to two different wave numbers becoming
Eg. (A16). Three simplifications are necessary. First, theitical at threshold, an unwanted feature for us.

nonlinear functional in Eq(A16) does not have a closed-

The effect of this third simplification can be further un-

form representation in real space. As has been done in othggsiood by comparing the amplitude equation on the model

systemgcf. Rayleigh-Bénard convectidd3]), we introduce

and that of the inviscid fluid. By introducing a multiple scale

phenomenological functional forms for this term. In doing expansion of the form

so, we artificially determine the symmetry of the bifurcating
pattern at onset, but more importantly in the case of Faraday
waves, we sidestep the issue of the origin of nonlinear damp-
ing and saturation of the wav¢$1,44. In the simplest pos-

sible case, the nonlinear term in H@\16) is approximated

+N
P=52 a(X, 1Ty, T ™+ Py + Sy -+ (A21)
j=+1

with 6 a small bookkeeping parameter, akd- X, T,=4t,

by an imaginary constanR’. Second, it is also known that andT,= 6%, we find that up to orde®(5° [10]

linear damping is not sufficient to produce wave saturation in
this systeni40]. We introduce a phenomenological nonlinear
damping coefficientyy’, wherea is a constant assumed to

be of order 1.

We finally define a complex order parameter figlck,t)
as the inverse Fourier transform Atk), and find from Eq.
(A16),

dap= =y P+ it Y ic (R + Vi icy(V2 + K2) 2y
+ (- ay +iR)|YlPy. (A20)

We now choosew(ky) =2 /2 as the unit of time, 1, as the
unit of length, and further define=f'/ w(ky) =kqa/4w(koy)?,

. 3. 3i

day=— yay +ifa ;- E(kj -V)a + ZVZa]- +(—ay+i)

><(|a,—|2aj +23 [affy + 23 aeL|Ej) (A22)

1% I#j

by following the same expansion procedure outlined above.
The terms linear in the amplitudes are the same as the cor-
responding terms in the amplitude equation derived directly
from the inviscid equations except for an additional term
(kj-V)Zaj, which is missing in Eq(A22). This is a direct
consequence of having eliminated the téta+V?2)2y in the
phenomenological model.
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